Preclinical evaluation of novel MCL-1 degrader in *in vitro* and *in vivo* cancer models **Captor** Therapeutics[®] P. Kowalczyk, T. Tomczyk, J. M. Arencibia, M. Milewicz, J. Skalska, D. Trębicka, K. Poniatowska, J. Adamczyk, K. Wójcik, S. Cottens, P. Dobrzański, M. Biśta, K. Brach,

The project entitled "Inducing apoptosis with small molecules as therapeutic intervention in multiple severe malignancies" is co-funded by the European Regional Development Fund (POIR.01.01.00-0956/17). Beneficiary: Captor Therapeutics Inc.

BACKGROUND

MCL-1 protein belongs to the Bcl-2 family consisting of both pro- and anti-apoptotic proteins. It serves as a master pro-survival factor by inhibiting apoptosis in a broad range of human malignancies. MCL-1 is involved in cancer resistance to different types of therapies; thus its targeting appears very attractive. Although several MCL-1 inhibitors have been studied in clinical trials, none has been approved for clinical use so far. Degradation of a target protein offers several advantages over traditional inhibitors, e.g., potential to overcome resistance to inhibitors, greater response even at a lower dose, extended pharmacodynamics, better selectivity and many others. This approach has recently emerged as a novel therapeutic modality in drug discovery. In this report, we present an *in vitro* and *in vivo* characterization of a newly-developed compound capable of degrading MCL-1 protein.

MATERIALS AND METHODS

A series of biophysical methods (FP, SPR, AlphaLisa) have been utilized to characterize compound interactions with MCL-1 protein and E3 Ligase. The biological properties of the reported molecule have been determined using cancer cell culture models (cell viability assessment using Cell Titer-Glo Assay), molecular biology techniques (western blots to confirm target protein degradation, apoptosis induction and the MoA) as well as a MV-4-11 xenograft *in vivo* model.

SUMMARY OF BIOPHYSICAL AND IN VITRO ADME **PROPERTIES OF CPT-2036**

Cpd	pK _d (SPR) hMCL-1	pK _i (FP) hMCL-1	pK _i (FP) hCRBN	pEC ₅₀ , (AlphaLisa) hMCL-1, h CRBN		
	(bina	ary complex forma	(ternary complex formation)			
CPT-2036	8.22	>8.62	5.68	8.13		
ASSAY			SPECIES	VALUE		
			1A2	>30		
CYP inhibition <i>IC</i> 50 [µM]			2C9	>30		
			2D6	>30		
			3A4	>30		
			2C19	>30		
Plasma protein binding [% bound]			Mouse	>99		
			Rat	>99		
			Human	>99		
Plasma stability [% remaining @ 120 min]			Mouse	59		
			Rat	56		
			Human	56		
Liver hepatocyte stability			Mouse	25		
		Y	Human	78		
I _{1/2} [min]			Monkey	41		

CPT-2036 PHARMACOKINETIC PROFILE IN CD-1 MICE

BASIC PK PARAMETERS FOR CPT-2036								
dosed IV (1mg/kg)		dosed IP (30 mg/kg)						
Dose (mg/kg)	1,00	Dose (mg/kg)	30,00					
C0 (ng/mL)	440,54	Cmax (ng/mL)	3431,94					
Vd (L/kg)	51,92	Tmax (h)	2,00					
Cl (mL/min/kg)	87,53	T1/2 (h)	NC					
T1/2 (h)	8,01	AUC0-last (ng·h/mL)	13523,62					
AUCO-last (ng·h/mL)	123,41	AUC0-inf (ng·h/mL)	NC					
AUC0-inf (ng·h/mL)	208,44	AUCExtra(%)	NC					
AUCExtra(%)	37,12	MRTO-last (h)	3,05					
MRTO-last (h)	2,16	Rsq	NC					
Rsq	0,8854	%F	365,27					

Figure 1. A) Mean (±SD) CPT-2036 plasma concentrations following IV (1.0 mg/kg) and IP administration (30 mg/kg). B) Table summarizing basic PK parameters of CPT-2036 after IV and IP administration.

European Funds Smart Growth

Figure 2. A) Cytotoxicity of the CPT-2036 in panel of hematological cancer cell lines using a 72-hour CellTiter-Glo[®] Assay. As controls, MCL-1-dependent (MV4-11 - acute myeloid leukemia) and MCL-1-independent (ARH-77 - plasma cell leukemia) cell lines were used. B) The effect of the CRBN ligand presence on the CPT-2036 cytotoxic activity in MV4-11 cells.

A)

A)

A)

M. Świtalska-Drewniak, A. Tracz, M. Pastok, K. Górecka-Minakowska, K. Chrzanowska, K. Kaczanowska, M. J. Walczak FPN 36P (#1154)

CPT-2036 SHOWS POTENT AND CRBN DEPENDENT CYTOTOXIC ACTIVITY IN HEMATOLOGICAL CANCER CELL LINES

CPT-2036 DEMONSTRATES SYNERGISTIC EFFECT IN COMBINATION WITH BCL-2 INHIBITOR IN MV4-11 CELLS

Figure 3. MV4-11 cells were co-treated with CPT-2036 and BCL-2 inhibitor (Venetoclax) for 6 h (WB) or 72 h (CTG). The cytotoxicity determined by CTG assay and Synergy score was calculated (A), target protein and apoptosis markers (PARP CL, CASPASE 3 CL) levels were evaluated by WB (B). C) Densitometric quantitative analysis of cleaved PARP protein level.

CPT-2036 DRIVEN MCL-1 DEGRADATION IS PROTEASOME AND CRBN DEPENDENT

Figure 4. OPM-2 cells were pretreated for 1 hour with a proteasome inhibitor, MG-132 (10µM) or CRBN ligand (1µM) and then treated with CPT-2036 for 6 hours. A) Cell lysates were analyzed for MCL-1 degradation and apoptosis induction (cleaved PARP or caspase-3) using WB. B) Densitometric quantitative analysis of the level of MCL-1 protein degradation.

European Union European Regional **Development Fund**

PK/PD RELATIONSHIP OF CPT-2036 IN MV4-11 XENOGRAFT MICE

Figure 5. CB-17 SCID mice with 350 mm³ MV4-11 tumors were treated with 150 mg/kg dose of CPT-2036 administered IP or with 50 mg/kg dose administered IV; at the indicated timepoints mice were sacrificed, plasma and tumor samples were collected. Tumor samples collected from mice dosed IP (A) and IV (C) were analyzed for MCL-1 degradation and apoptosis induction using WB. (B&D) Compound concentration in plasma and tumor samples.

CPT-2036 TREATMENT SHOWS POTENT ANTI-TUMOR ACTIVITY IN MV4-11 XENOGRAFT MODEL

RESULTS SUMMARY

The reported compound binds both E3 Ligase and target protein MCL-1 with high affinity and forms a ternary complex *in vitro*. In cancer cells, it induces the degradation of MCL-1 which results in apoptosis induction and cell death. The compound shows a desirable PK and PD profile, as well as causes in vivo tumor growth inhibition in human AML MV4-11 xenograft mouse model.

CONCLUSIONS

Presented results indicate that targeting MCL-1 protein by induction of its degradation could represent a new and effective strategy for cancer treatment.

ontrol	CPT-2036 (50 mg/kg, IV)								
2h 2h	4h	6h	8h	12h	24	<u>n</u>	48h		
	BEE								
===				-					
				-	-				
blot									
reatment time [h]	2	4	6	8	12	24	48		
sma conc. [ng/ml]	647	173	100	51	9	4	<1		
mour conc. [ng/g]	3251	1496	944	938	503	88	4		